We present a tunable representation for tracking that simultaneously encodes appearance and geometry in a manner that enables the use of mean-shift iterations for tracking. The classic formulation of the tracking problem using mean-shift iterations encodes spatial information very loosely (i.e. using radially symmetric kernels). A problem with such a formulation is that it becomes easy for the tracker to get confused with other objects having the same feature distribution but different spatial configurations of features. Subsequent approaches have addressed this issue but not to the degree of generality required for tracking specific classes of objects and motions (e.g. humans walking). In this paper, we formulate the tracking problem in a manner that encodes the spatial configuration of features along with their density and yet retains robustness to spatial deformations and feature density variations. The encoding of spatial configuration is done using a set of kernels whose paramete...