Sciweavers

CORR
2007
Springer

A Tutorial on Spectral Clustering

13 years 11 months ago
A Tutorial on Spectral Clustering
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.
Ulrike von Luxburg
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2007
Where CORR
Authors Ulrike von Luxburg
Comments (0)