As a means of transmitting not only data but also code encapsulated within functions, higher-order channels provide an advanced form of task parallelism in parallel computations. In the presence of mutable references, however, they pose a safety problem because references may be transmitted to remote threads where they are no longer valid. This paper presents an ML-like parallel language with typesafe higher-order channels. By type safety, we mean that no value written to a channel contains references, or equivalently, that no reference escapes via a channel from the thread where it is created. The type system uses a typing judgment that is capable of deciding whether the value to which a term evaluates contains references or not. The use of such a typing judgment also makes it easy to achieve another desirable feature of channels, channel locality, that associates every channel with a unique thread for serving all values addressed to it. Our type system permits mutable references in ...