Standard ML employs an opaque (or generative) semantics of datatypes, in which every datatype declaration produces a new type that is different from any other type, including other identically defined datatypes. A natural way of accounting for this is to conatypes to be abstract. When this interpretation is applied to type-preserving compilation, however, it has the unfortunate consequence that datatype constructors cannot be inlined, substantially increasing the run-time cost of constructor invocation compared to a traditional compiler. In this paper we examine two approaches to eliminating function call overhead from datatype constructors. First, we consider a transparent interpretation of datatypes that does away with generativity, altering the semantics of SML; and second, we propose an interpretation of datatype constructors as coercions, which have no run-time effect or cost and faithfully implement SML semantics. Categories and Subject Descriptors D.3.3 [Programming Languages]...