Sciweavers

EUROGP
2005
Springer

Understanding Evolved Genetic Programs for a Real World Object Detection Problem

14 years 5 months ago
Understanding Evolved Genetic Programs for a Real World Object Detection Problem
We describe an approach to understanding evolved programs for a real world object detection problem, that of finding orthodontic landmarks in cranio-facial X-Rays. The approach involves modifying the fitness function to encourage the evolution of small programs, limiting the function set to a minimal number of operators and limiting the number of terminals (features). When this was done for two landmarks, an easy one and a difficult one, the evolved programs implemented a linear function of the features. Analysis of these linear functions revealed that underlying regularities were being captured and that successful evolutionary runs usually terminated with the best programs implementing one of a small number of underlying algorithms. Analysis of these algorithms revealed that they are a realistic solution to the object detection problem, given the features and operators available.
Victor Ciesielski, Andrew Innes, Sabu John, John M
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where EUROGP
Authors Victor Ciesielski, Andrew Innes, Sabu John, John Mamutil
Comments (0)