Popular online social networks (OSNs) like Facebook and Twitter are changing the way users communicate and interact with the Internet. A deep understanding of user interactions in OSNs can provide important insights into questions of human social behavior, and into the design of social platforms and applications. However, recent studies have shown that a majority of user interactions on OSNs are latent interactions, passive actions such as profile browsing that cannot be observed by traditional measurement techniques. In this paper, we seek a deeper understanding of both visible and latent user interactions in OSNs. For quantifiable data on latent user interactions, we perform a detailed measurement study on Renren, the largest OSN in China with more than 150 million users to date. All friendship links in Renren are public, allowing us to exhaustively crawl a connected graph component of 42 million