Sciweavers

KES
2008
Springer

On the use of spiking neural network for EEG classification

13 years 11 months ago
On the use of spiking neural network for EEG classification
This paper presents a new classification technique of continuous EEG recordings, based on a network of spiking neurons. Human EEG signals published on the BCI Competition website were used for the study. The signals were pre-processed using Wavelet Transform to remove the noise and to extract the low frequency content. Analysis of the signals was performed on the ensemble EEG and the task of the neural network was to identify the P300 component in the signal. The network employed leaky-integrate-and-fire (LIF) neurons as nodes in a multi-layered structure. The method involved formation of multiple weak classifiers to perform voting. Collective results are used for final classification. Results have shown the method to perform better than a genetic algorithm approach to the same problem.
Piyush Goel, Honghai Liu, David J. Brown, Avijit D
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2008
Where KES
Authors Piyush Goel, Honghai Liu, David J. Brown, Avijit Datta
Comments (0)