Sciweavers

HCI
2009

User Reputation Evaluation Using Co-occurrence Feature and Collective Intelligence

13 years 9 months ago
User Reputation Evaluation Using Co-occurrence Feature and Collective Intelligence
It becomes more difficult to find valuable contents in the Web 2.0 environment since lots of inexperienced users provide many unorganized contents. In the previous researches, people has proved that non-text information such as the number of references, the number of supports, and the length of answers is effective to evaluate answers to a question in a online QnA service site. However, these features can be changed easily by users and cannot reflect social activity of users. In this paper, we propose a new method to evaluate user reputation using co-occurrence features between question and answers, and collective intelligence. If we are able to calculate user reputation, then we can estimate the worth of contents that has small number of reference and small number of support. We compute the user reputation using a modified PageRank algorithm. The experiment results show that our proposed method is effective and useful for identifying such contents.
Jeong-Won Cha, Hyun-woo Lee, Yo-Sub Han, Laehyun K
Added 18 Feb 2011
Updated 18 Feb 2011
Type Journal
Year 2009
Where HCI
Authors Jeong-Won Cha, Hyun-woo Lee, Yo-Sub Han, Laehyun Kim
Comments (0)