One of the attractive features of Grid computing is that resources in geographically distant places can be mobilized to meet computational needs as they arise. A particularly challenging issue is that of executing a single application across multiple machines that are separated by large distances. While certain classes of applications such as pipeline style or master-slave style applications may run well in Grid computing environments with little or no modification, tightly-coupled applications require significant work to achieve good performance. In this paper, we demonstrate that message-driven objects, implemented in the Charm++ and Adaptive MPI systems, can be used to mask the effects of latency in Grid computing environments without requiring modification of application software. We examine a simple five-point stencil decomposition application as well as a more complex molecular dynamics application running in an environment in which arbitrary artificial latencies can be ind...
Gregory A. Koenig, Laxmikant V. Kalé