RND (Radio Network Design) is an important problem in mobile telecommunications (for example in mobile/cellular telephony), being also relevant in the rising area of sensor networks. This problem consists in covering a certain geographical area by using the smallest number of radio antennas achieving the biggest cover rate. To date, several radio antenna models have been used: square coverage antennas, omnidirectional antennas that cover a circular area, etc. In this work we use omnidirectional antennas. On the other hand, RND is an NP-hard problem; therefore its solution by means of evolutionary algorithms is appropriate. In this work we study different evolutionary approaches to tackle this problem. PBIL (Population-Based Incremental Learning) is based on genetic algorithms and competitive learning (typical in neural networks). DE (Differential Evolution) is a very simple population-based stochastic function minimizer used in a wide range of optimization problems, including multi-obj...
Miguel A. Vega-Rodríguez, Juan Antonio G&oa