We present a biologically inspired neural network model of visual orienting (using saccadic eye movements) in which targets are preferentially selected according to their reward value. Internal representations of visual features that guide saccades are developed in a self-organised map whose plasticity is modulated under reward. In this way, only those features relevant for acquiring rewarding targets are generated. As well as guiding the formation of feature representations, rewarding stimuli are stored in a working memory and bias future saccade generation. In addition, a reward prediction error is used to initiate retraining of the self-organised map to generate more efficient representations of the features when necessary.
Kevin Brohan, Kevin N. Gurney, Piotr Dudek