Automated negotiation is a key form of interaction in systems that are composed of multiple autonomous agents. The aim of such interactions is to reach agreements through an iterative process of making offers. The content of such proposals are, however, a function of the strategy of the agents. Here we present a strategy called the trade-off strategy where multiple negotiation decision variables are traded-off against one another (e.g., paying a higher price in order to obtain an earlier delivery date or waiting longer in order to obtain a higher quality service). Such a strategy is commonly known to increase the social welfare of agents. Yet, to date, most computational work in this area has ignored the issue of trade-offs, instead aiming to increase social welfare through mechanism design. The aim of this paper is to develop a heuristic computational model of the trade-off strategy and show that it can lead to an increased social welfare of the system. A novel linear algorithm is pr...
Peyman Faratin, Carles Sierra, Nicholas R. Jenning