Sciweavers

JMLR
2010

Variational methods for Reinforcement Learning

13 years 7 months ago
Variational methods for Reinforcement Learning
We consider reinforcement learning as solving a Markov decision process with unknown transition distribution. Based on interaction with the environment, an estimate of the transition matrix is obtained from which the optimal decision policy is formed. The classical maximum likelihood point estimate of the transition model does not reflect the uncertainty in the estimate of the transition model and the resulting policies may consequently lack a sufficient degree of exploration. We consider a Bayesian alternative that maintains a distribution over the transition so that the resulting policy takes into account the limited experience of the environment. The resulting algorithm is formally intractable and we discuss two approximate solution methods, Variational Bayes and Expectation Propagation.
Thomas Furmston, David Barber
Added 19 May 2011
Updated 19 May 2011
Type Journal
Year 2010
Where JMLR
Authors Thomas Furmston, David Barber
Comments (0)