In this paper, we present a method for cup boundary detection from monocular colour fundus image to help quantify cup changes. The method is based on anatomical evidence such as vessel bends at cup boundary, considered relevant by glaucoma experts. Vessels are modeled and detected in a curvature space to better handle inter-image variations. Bends in a vessel are robustly detected using a region of support concept, which automatically selects the right scale for analysis. A reliable subset called r-bends is derived using a multi-stage strategy and a local spline fitting is used to obtain the desired cup boundary. The method has been successfully tested on 133 images comprising 32 normal and 101 glaucomatous images against three glaucoma experts. The proposed method shows high sensitivity in cup to disk ratio-based glaucoma detection and local assessment of the detected cup boundary shows good consensus with the expert markings.