We present a navigation algorithm, which integrates virtual obstacle concept with a potential-field-based method to maneuver cylindrical mobile robots in unknown or unstructured environments. This study focuses on the real-time feature of the navigation algorithm for fast moving mobile robots. We mainly consider the potential-field method in conjunction with virtual obstacle concept as the basis of our navigation algorithm. Simulation and experiments of our algorithm shows good performance and ability to overcome the local minimum problem associated with potential field methods.
Liu Chengqing, Marcelo H. Ang, Hariharan Krishnan,