A novel vision-based scheme is presented for driving a nonholonomic mobile robot to intercept a moving target. The proposed method has a two-level structure. On the lower level, the pan–tilt platform carrying the on-board camera is controlled so as to keep the target as close as possible to the center of the image plane. On the higher level, the relative position of the target is retrieved from its image coordinates and the camera pan–tilt angles through simple geometry, and used to compute a control law which drives the robot to the target. Various possible choices are discussed for the high-level robot controller, and the associated stability properties are rigorously analysed. The proposed visual interception method is validated through simulations as well as experiments on the mobile robot MagellanPro. c 2007 Elsevier B.V. All rights reserved.