In this paper, we propose a learning-based demosaicing and a restoration error detection. A Vector Quantization (VQ)based method is utilized for learning. We take advantage of a self-similarity in an image for a codebook generation in VQ. The mosaic image is interpolated via a traditional method, and applied scaling, blurring, phase-shifting and resampling are used to create a training data for the codebook. The characteristics of the training data are similar to those of an ideal image. Using such training data and approximation of an ideal codevector by a locally linear embedding (LLE)- based method increases the probability of finding a suitable codevector from the codebook. Even if we cannot find a good codevector in an ill-conditioned case, the error detection finds poorly estimated pixel values and replaces them with better restoration results by another demosaicing method.
Yoshikuni Nomura, Shree K. Nayar