In this paper, we present a novel design of a wavelet-based video coding algorithm within a conventional hybrid framework of temporal motion-compensated prediction and transform coding. Our proposed algorithm involves the incorporation of multi-frame motion compensation as an effective means of improving the quality of the temporal prediction. In addition, we follow the rate-distortion optimizing strategy of using a Lagrangian cost function to discriminate between different decisions in the video encoding process. Finally, we demonstrate that context-based adaptive arithmetic coding is a key element for fast adaptation and high coding efficiency. The combination of overlapped block motion compensation and frame-based transform coding enables blocking-artifact free and hence subjectively more pleasing video. In comparison with a highly optimized MPEG-4 (Version 2) coder, our proposed scheme provides significant performance gains in objective quality of 2.0– 3.5 dB PSNR.
Detlev Marpe, Thomas Wiegand, Hans L. Cycon