We study the computational power of pure insertion grammars. We show that pure insertion grammars of weight 3 can characterize all recursively enumerable languages. This is achieved by either applying an inverse morphism and a weak coding, or a left (right) quotient with a regular language. A consequences for the closure properties of insertion grammars are shown. We also study an application in DNA computing and improve some known results concerning the power of insertion-deletion DNA systems.