Clothing is one of the most informative cues of human appearance. In this paper, we propose a novel multi-person clothing segmentation algorithm for highly occluded images. The key idea is combining blocking models to address the person-wise occlusions. In contrary to the traditional layered model that tries to solve the full layer ranking problem, the proposed blocking model partitions the problem into a series of pair-wise ones and then determines the local blocking relationship based on individual and contextual information. Thus, it is capable of dealing with cases with a large number of people. Additionally, we propose a layout model formulated as Markov Network which incorporates the blocking relationship to pursue an approximately optimal clothing layout for group people. Experiments demonstrated on a group images dataset show the effectiveness of our algorithm.