The development and proliferation of social media services has led to the emergence of new approaches for surveying the population and addressing social issues. One popular application of social media data is health surveillance, e.g., predicting the outbreak of an epidemic by recognizing diseases and symptoms from text messages posted on social media platforms. In this paper, we propose a novel task that is crucial and generic from the viewpoint of health surveillance: estimating a subject (carrier) of a disease or symptom mentioned in a Japanese tweet. By designing an annotation guideline for labeling the subject of a disease/symptom in a tweet, we perform annotations on an existing corpus for public surveillance. In addition, we present a supervised approach for predicting the subject of a disease/symptom. The results of our experiments demonstrate the impact of subject identification on the effective detection of an episode of a disease/symptom. Moreover, the results suggest that...