Achieving computer vision on micro-scale devices is a challenge. On these platforms, the power and mass constraints are severe enough for even the most common computations (matrix manipulations, convolution, etc.) to be difficult. This paper proposes and analyzes a class of miniature vision sensors that can help overcome these constraints. These sensors reduce power requirements through template-based optical convolution, and they enable a wide field-of-view within a small form through a novel optical design. We describe the trade-offs between the field of view, volume, and mass of these sensors and we provide analytic tools to navigate the design space. We also demonstrate milli-scale prototypes for computer vision tasks such as locating edges, tracking targets, and detecting faces.