Sciweavers

CPC
2002

The Wiener Index Of Random Trees

13 years 11 months ago
The Wiener Index Of Random Trees
The Wiener index is analyzed for random recursive trees and random binary search trees in the uniform probabilistic models. We obtain the expectations, asymptotics for the variances, and limit laws for this parameter. The limit distributions are characterized as the projections of bivariate measures that satisfy certain fixed-point equations. Covariances, asymptotic correlations, and bivariate limit laws for the Wiener index and the internal path length are given. AMS subject classifications. Primary: 60F05, 05C12; secondary: 05C05, 68Q25. Key words. Wiener index, weak convergence, distance (in a graph), random binary search tree, random recursive tree, contraction method, bivariate limit law.
Ralph Neininger
Added 18 Dec 2010
Updated 18 Dec 2010
Type Journal
Year 2002
Where CPC
Authors Ralph Neininger
Comments (0)