Sciweavers

ICMCS
2007
IEEE

Word Topical Mixture Models for Extractive Spoken Document Summarization

14 years 5 months ago
Word Topical Mixture Models for Extractive Spoken Document Summarization
This paper considers extractive summarization of Chinese spoken documents. In contrast to conventional approaches, we attempt to deal with the extractive summarization problem under a probabilistic generative framework. A word topical mixture model (w-TMM) was proposed to explore the cooccurrence relationship between words of the language. Each sentence of the spoken document to be summarized was treated as a composite word TMM model for generating the document, and sentences were ranked and selected according to their likelihoods. Various kinds of modeling structures and learning approaches were extensively investigated. In addition, the summarization capabilities were verified by comparison with the other conventional summarization approaches. The experiments were performed on the Chinese broadcast news collected in Taiwan. Noticeable performance gains were obtained. The proposed summarization technique has also been properly integrated into our prototype system for voice retrieval ...
Berlin Chen, Yi-Ting Chen
Added 03 Jun 2010
Updated 03 Jun 2010
Type Conference
Year 2007
Where ICMCS
Authors Berlin Chen, Yi-Ting Chen
Comments (0)