Kernel summations are a ubiquitous key computational bottleneck in many data analysis methods. In this paper, we attempt to marry, for the first time, the best relevant technique...
Dongryeol Lee, Richard W. Vuduc, Alexander G. Gray
Many machine learning algorithms require the summation of Gaussian kernel functions, an expensive operation if implemented straightforwardly. Several methods have been proposed to...
Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C....
Kernel machines have been shown as the state-of-the-art learning techniques for classification. In this paper, we propose a novel general framework of learning the Unified Kernel ...
Many applications in text and speech processing require the analysis of distributions of variable-length sequences. We recently introduced a general kernel framework, rational ker...
Kernel methods have been applied successfully in many data mining tasks. Subspace kernel learning was recently proposed to discover an effective low-dimensional subspace of a kern...
Jianhui Chen, Shuiwang Ji, Betul Ceran, Qi Li, Min...