Sciweavers

228 search results - page 1 / 46
» A Survey of Methods for Scaling Up Inductive Algorithms
Sort
View
DATAMINE
1999
108views more  DATAMINE 1999»
13 years 10 months ago
A Survey of Methods for Scaling Up Inductive Algorithms
Abstract. One of the de ning challenges for the KDD research community is to enable inductive learning algorithms to mine very large databases. This paper summarizes, categorizes, ...
Foster J. Provost, Venkateswarlu Kolluri
IFIP12
2008
14 years 9 days ago
P-Prism: A Computationally Efficient Approach to Scaling up Classification Rule Induction
Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unse...
Frederic T. Stahl, Max A. Bramer, Mo Adda
KDD
1997
ACM
103views Data Mining» more  KDD 1997»
14 years 3 months ago
Scaling Up Inductive Algorithms: An Overview
Foster J. Provost, Venkateswarlu Kolluri
CORR
2000
Springer
120views Education» more  CORR 2000»
13 years 10 months ago
Scaling Up Inductive Logic Programming by Learning from Interpretations
When comparing inductive logic programming (ILP) and attribute-value learning techniques, there is a trade-off between expressive power and efficiency. Inductive logic programming ...
Hendrik Blockeel, Luc De Raedt, Nico Jacobs, Bart ...
ICPR
2000
IEEE
14 years 3 months ago
Scaling-Up Support Vector Machines Using Boosting Algorithm
In the recent years support vector machines (SVMs) have been successfully applied to solve a large number of classification problems. Training an SVM, usually posed as a quadrati...
Dmitry Pavlov, Jianchang Mao, Byron Dom