Sciweavers

14 search results - page 3 / 3
» A multi-FPGA architecture for stochastic Restricted Boltzman...
Sort
View
NIPS
2007
14 years 8 days ago
Sparse Feature Learning for Deep Belief Networks
Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the ra...
Marc'Aurelio Ranzato, Y-Lan Boureau, Yann LeCun
COLING
2010
13 years 5 months ago
Active Deep Networks for Semi-Supervised Sentiment Classification
This paper presents a novel semisupervised learning algorithm called Active Deep Networks (ADN), to address the semi-supervised sentiment classification problem with active learni...
Shusen Zhou, Qingcai Chen, Xiaolong Wang
JMLR
2010
145views more  JMLR 2010»
13 years 5 months ago
Parallelizable Sampling of Markov Random Fields
Markov Random Fields (MRFs) are an important class of probabilistic models which are used for density estimation, classification, denoising, and for constructing Deep Belief Netwo...
James Martens, Ilya Sutskever
ICML
2008
IEEE
14 years 11 months ago
On the quantitative analysis of deep belief networks
Deep Belief Networks (DBN's) are generative models that contain many layers of hidden variables. Efficient greedy algorithms for learning and approximate inference have allow...
Ruslan Salakhutdinov, Iain Murray