Sciweavers

21 search results - page 1 / 5
» Bayesian reinforcement learning in continuous POMDPs with ga...
Sort
View
IROS
2009
IEEE
206views Robotics» more  IROS 2009»
14 years 5 months ago
Bayesian reinforcement learning in continuous POMDPs with gaussian processes
— Partially Observable Markov Decision Processes (POMDPs) provide a rich mathematical model to handle realworld sequential decision processes but require a known model to be solv...
Patrick Dallaire, Camille Besse, Stéphane R...
ICRA
2008
IEEE
173views Robotics» more  ICRA 2008»
14 years 5 months ago
Bayesian reinforcement learning in continuous POMDPs with application to robot navigation
— We consider the problem of optimal control in continuous and partially observable environments when the parameters of the model are not known exactly. Partially Observable Mark...
Stéphane Ross, Brahim Chaib-draa, Joelle Pi...
PKDD
2010
Springer
179views Data Mining» more  PKDD 2010»
13 years 9 months ago
Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-Like Exploration
Abstract. We present an implementation of model-based online reinforcement learning (RL) for continuous domains with deterministic transitions that is specifically designed to achi...
Tobias Jung, Peter Stone
NIPS
2007
14 years 17 days ago
Bayes-Adaptive POMDPs
Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning...
Stéphane Ross, Brahim Chaib-draa, Joelle Pi...
ICML
2005
IEEE
14 years 12 months ago
Reinforcement learning with Gaussian processes
Gaussian Process Temporal Difference (GPTD) learning offers a Bayesian solution to the policy evaluation problem of reinforcement learning. In this paper we extend the GPTD framew...
Yaakov Engel, Shie Mannor, Ron Meir