Forming consensus clusters from multiple input clusterings can improve accuracy and robustness. Current clustering ensemble methods require specifying the number of consensus clust...
Pu Wang, Carlotta Domeniconi, Kathryn Blackmond La...
— Clustering is a pivotal building block in many data mining applications and in machine learning in general. Most clustering algorithms in the literature pertain to off-line (or...
Steven Young, Itamar Arel, Thomas P. Karnowski, De...
In this paper we describe a new cluster model which is based on the concept of linear manifolds. The method identifies subsets of the data which are embedded in arbitrary oriented...
Cluster ensembles provide a framework for combining multiple base clusterings of a dataset to generate a stable and robust consensus clustering. There are important variants of th...
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size inc...
Ulrike von Luxburg, Olivier Bousquet, Mikhail Belk...