Sciweavers

47 search results - page 1 / 10
» Compact approximations to Bayesian predictive distributions
Sort
View
ICML
2005
IEEE
14 years 12 months ago
Compact approximations to Bayesian predictive distributions
We provide a general framework for learning precise, compact, and fast representations of the Bayesian predictive distribution for a model. This framework is based on minimizing t...
Edward Snelson, Zoubin Ghahramani
TEC
2008
115views more  TEC 2008»
13 years 11 months ago
Function Approximation With XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and Compaction
An important strength of learning classifier systems (LCSs) lies in the combination of genetic optimization techniques with gradient-based approximation techniques. The chosen app...
Martin V. Butz, Pier Luca Lanzi, Stewart W. Wilson
ICCV
2009
IEEE
13 years 9 months ago
Bayesian Poisson regression for crowd counting
Poisson regression models the noisy output of a counting function as a Poisson random variable, with a log-mean parameter that is a linear function of the input vector. In this wo...
Antoni B. Chan, Nuno Vasconcelos
JMLR
2010
140views more  JMLR 2010»
13 years 6 months ago
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Continuous-time Bayesian networks is a natural structured representation language for multicomponent stochastic processes that evolve continuously over time. Despite the compact r...
Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman
CORR
2012
Springer
196views Education» more  CORR 2012»
12 years 6 months ago
PAC-Bayesian Policy Evaluation for Reinforcement Learning
Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, lar...
Mahdi Milani Fard, Joelle Pineau, Csaba Szepesv&aa...