Abstract We present an active learning framework that predicts the tradeoff between the effort and information gain associated with a candidate image annotation, thereby ranking un...
This paper presents a search engine architecture, RETIN, aiming at retrieving complex categories in large image databases. For indexing, a scheme based on a two-step quantization ...
Philippe Henri Gosselin, Matthieu Cord, Sylvie Phi...
Discriminative methods for visual object category recognition are typically non-probabilistic, predicting class labels but not directly providing an estimate of uncertainty. Gauss...
Ashish Kapoor, Kristen Grauman, Raquel Urtasun, Tr...
We present a novel stereo vision modeling framework that generates approximate, yet physically-plausible representations of objects rather than creating accurate models that are c...
Krishnanand N. Kaipa, Josh C. Bongard, Andrew N. M...
We present an active learning approach to choose image annotation requests among both object category labels and the objects’ attribute labels. The goal is to solicit those labe...