Sciweavers

14 search results - page 1 / 3
» Dimensionality reduction using covariance operator inverse r...
Sort
View
CVPR
2008
IEEE
15 years 1 months ago
Dimensionality reduction using covariance operator inverse regression
We consider the task of dimensionality reduction for regression (DRR) whose goal is to find a low dimensional representation of input covariates, while preserving the statistical ...
Minyoung Kim, Vladimir Pavlovic
JMLR
2010
136views more  JMLR 2010»
13 years 5 months ago
High Dimensional Inverse Covariance Matrix Estimation via Linear Programming
This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by "sparse" matrices. Taking advantage of the c...
Ming Yuan
IDEAL
2010
Springer
13 years 9 months ago
Dimension Reduction for Regression with Bottleneck Neural Networks
Dimension reduction for regression (DRR) deals with the problem of finding for high-dimensional data such low-dimensional representations, which preserve the ability to predict a ...
Elina Parviainen
NIPS
2003
14 years 10 days ago
Kernel Dimensionality Reduction for Supervised Learning
We propose a novel method of dimensionality reduction for supervised learning. Given a regression or classification problem in which we wish to predict a variable Y from an expla...
Kenji Fukumizu, Francis R. Bach, Michael I. Jordan
ICML
2007
IEEE
14 years 11 months ago
Regression on manifolds using kernel dimension reduction
We study the problem of discovering a manifold that best preserves information relevant to a nonlinear regression. Solving this problem involves extending and uniting two threads ...
Jens Nilsson, Fei Sha, Michael I. Jordan