We present a hybrid and parallel system based on artificial neural networks for a face invariant classifier and general pattern recognition problems. A set of face features is ext...
Peter V. Bazanov, Tae-Kyun Kim, Seok-Cheol Kee, Sa...
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a particular linear combination of the input variables while constraining the numb...
Alexandre d'Aspremont, Francis R. Bach, Laurent El...
Principal component analysis (PCA) minimizes the sum of squared errors (L2-norm) and is sensitive to the presence of outliers. We propose a rotational invariant L1-norm PCA (R1-PC...
Chris H. Q. Ding, Ding Zhou, Xiaofeng He, Hongyuan...
In this paper, we present a mixture Principal Component Analysis (mPCA)-based approach for voxel level quantification of dynamic positron emission tomography (PET) data in brain s...
One of the main problems in probabilistic grammatical inference consists in inferring a stochastic language, i.e. a probability distribution, in some class of probabilistic models...