In this paper we discuss boosting algorithms that maximize the soft margin of the produced linear combination of base hypotheses. LPBoost is the most straightforward boosting algor...
Manfred K. Warmuth, Karen A. Glocer, S. V. N. Vish...
We propose an algorithm to construct classification models with a mixture of kernels from labeled and unlabeled data. The derived classifier is a mixture of models, each based o...
We present a novel boosting algorithm, called SoftBoost, designed for sets of binary labeled examples that are not necessarily separable by convex combinations of base hypotheses....
Manfred K. Warmuth, Karen A. Glocer, Gunnar Rä...
In this paper we propose a novel general framework for unsupervised model adaptation. Our method is based on entropy which has been used previously as a regularizer in semi-superv...
Ariya Rastrow, Frederick Jelinek, Abhinav Sethy, B...
We present a combinatorial characterization of the Bethe entropy function of a factor graph, such a characterization being in contrast to the original, analytical, definition of th...