Sciweavers

2884 search results - page 311 / 577
» Evaluating learning algorithms and classifiers
Sort
View
ICML
2004
IEEE
14 years 11 months ago
SVM-based generalized multiple-instance learning via approximate box counting
The multiple-instance learning (MIL) model has been very successful in application areas such as drug discovery and content-based imageretrieval. Recently, a generalization of thi...
Qingping Tao, Stephen D. Scott, N. V. Vinodchandra...
SIGIR
2011
ACM
13 years 1 months ago
Collaborative competitive filtering: learning recommender using context of user choice
While a user’s preference is directly reflected in the interactive choice process between her and the recommender, this wealth of information was not fully exploited for learni...
Shuang-Hong Yang, Bo Long, Alexander J. Smola, Hon...
AAAI
2011
12 years 10 months ago
Coarse-to-Fine Inference and Learning for First-Order Probabilistic Models
Coarse-to-fine approaches use sequences of increasingly fine approximations to control the complexity of inference and learning. These techniques are often used in NLP and visio...
Chloe Kiddon, Pedro Domingos
ICML
2004
IEEE
14 years 11 months ago
Nonparametric classification with polynomial MPMC cascades
A new class of nonparametric algorithms for high-dimensional binary classification is proposed using cascades of low dimensional polynomial structures. Construction of polynomial ...
Sander M. Bohte, Markus Breitenbach, Gregory Z. Gr...
ECML
2007
Springer
14 years 4 months ago
Avoiding Boosting Overfitting by Removing Confusing Samples
Boosting methods are known to exhibit noticeable overfitting on some datasets, while being immune to overfitting on other ones. In this paper we show that standard boosting algorit...
Alexander Vezhnevets, Olga Barinova