Abstract-- Extending traditional models for discriminative labeling of structured data to include higher-order structure in the labels results in an undesirable exponential increas...
Many diagrams contain compound objects composed of parts. We propose a recognition framework that learns parts in an unsupervised way, and requires training labels only for compou...
Inspired by the hierarchical hidden Markov models (HHMM), we present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of embedded undirected Markov ...
Tran The Truyen, Dinh Q. Phung, Hung Hai Bui, Svet...
Activity recognition is a key component for creating intelligent, multi-agent systems. Intrinsically, activity recognition is a temporal classification problem. In this paper, we...
Douglas L. Vail, Manuela M. Veloso, John D. Laffer...
We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hid...
John D. Lafferty, Andrew McCallum, Fernando C. N. ...