We introduce Hidden Process Models (HPMs), a class of probabilistic models for multivariate time series data. The design of HPMs has been motivated by the challenges of modeling h...
Rebecca Hutchinson, Tom M. Mitchell, Indrayana Rus...
Hidden Markov Models are a widely used generative model for analysing sequence data. A variant, Profile Hidden Markov Models are a special case used in Bioinformatics to represent,...
Stefan Mutter, Bernhard Pfahringer, Geoffrey Holme...
The infinite hidden Markov model is a nonparametric extension of the widely used hidden Markov model. Our paper introduces a new inference algorithm for the infinite Hidden Markov...
Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, Zoubi...
We introduce a new probability distribution over a potentially infinite number of binary Markov chains which we call the Markov Indian buffet process. This process extends the IBP...