Sciweavers

3 search results - page 1 / 1
» Inference in Multilayer Networks via Large Deviation Bounds
Sort
View
NIPS
1998
14 years 8 days ago
Inference in Multilayer Networks via Large Deviation Bounds
We study probabilistic inference in large, layered Bayesian networks represented as directed acyclic graphs. We show that the intractability of exact inference in such networks do...
Michael J. Kearns, Lawrence K. Saul
UAI
1998
14 years 8 days ago
Large Deviation Methods for Approximate Probabilistic Inference
We study two-layer belief networks of binary random variables in which the conditional probabilities Pr childjparents depend monotonically on weighted sums of the parents. In larg...
Michael J. Kearns, Lawrence K. Saul
NIPS
2003
14 years 8 days ago
On the Concentration of Expectation and Approximate Inference in Layered Networks
We present an analysis of concentration-of-expectation phenomena in layered Bayesian networks that use generalized linear models as the local conditional probabilities. This frame...
XuanLong Nguyen, Michael I. Jordan