Sciweavers

921 search results - page 44 / 185
» Kernel Principal Component Analysis
Sort
View
144
Voted
AIPR
2002
IEEE
15 years 7 months ago
ICA Mixture Model based Unsupervised Classification of Hyperspectral Imagery
Conventional remote sensing classification techniques that model the data in each class with a multivariate Gaussian distribution are inefficient, as this assumption is generally ...
Chintan A. Shah, Manoj K. Arora, Stefan A. Robila,...
MIR
2010
ACM
179views Multimedia» more  MIR 2010»
15 years 27 days ago
Speculation on the generality of the backward stepwise view of PCA
A novel backwards viewpoint of Principal Component Analysis is proposed. In a wide variety of cases, that fall into the area of Object Oriented Data Analysis, this viewpoint is se...
J. S. Marron, Sungkyu Jung, Ian L. Dryden
ICML
2009
IEEE
16 years 3 months ago
Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning
Training principles for unsupervised learning are often derived from motivations that appear to be independent of supervised learning. In this paper we present a simple unificatio...
Linli Xu, Martha White, Dale Schuurmans
162
Voted
NIPS
2003
15 years 3 months ago
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data
In this paper we introduce a new underlying probabilistic model for principal component analysis (PCA). Our formulation interprets PCA as a particular Gaussian process prior on a ...
Neil D. Lawrence
IDEAL
2004
Springer
15 years 7 months ago
Dimensionality Reduction with Image Data
A common objective in image analysis is dimensionality reduction. The most common often used data-exploratory technique with this objective is principal component analysis. We pro...
Mónica Benito, Daniel Peña