Abstract. The Factored Markov Decision Process (FMDP) framework is a standard representation for sequential decision problems under uncertainty where the state is represented as a ...
Olga Kozlova, Olivier Sigaud, Pierre-Henri Wuillem...
In this paper we report on using a relational state space in multi-agent reinforcement learning. There is growing evidence in the Reinforcement Learning research community that a r...
Tom Croonenborghs, Karl Tuyls, Jan Ramon, Maurice ...
Abstract. We investigate the problem of using function approximation in reinforcement learning where the agent’s policy is represented as a classifier mapping states to actions....
Motivated by the interest in relational reinforcement learning, we introduce a novel relational Bellman update operator called ReBel. It employs a constraint logic programming lan...
Kristian Kersting, Martijn Van Otterlo, Luc De Rae...
In this paper the application of reinforcement learning to Tetris is investigated, particulary the idea of temporal difference learning is applied to estimate the state value funct...