We introduce new, efficient algorithms for value iteration with multiple reward functions and continuous state. We also give an algorithm for finding the set of all nondominated a...
Daniel J. Lizotte, Michael H. Bowling, Susan A. Mu...
— Reinforcement learning (RL) is a learning control paradigm that provides well-understood algorithms with good convergence and consistency properties. Unfortunately, these algor...
Lucian Busoniu, Damien Ernst, Bart De Schutter, Ro...
Abstract. Reinforcement learning (RL) is a widely used learning paradigm for adaptive agents. There exist several convergent and consistent RL algorithms which have been intensivel...
Lucian Busoniu, Damien Ernst, Bart De Schutter, Ro...
Identifying the appropriate kernel function/matrix for a given dataset is essential to all kernel-based learning techniques. A variety of kernel learning algorithms have been prop...