Sciweavers

16 search results - page 1 / 4
» Laplacian spectral bounds for clique and independence number...
Sort
View
JCT
2007
146views more  JCT 2007»
13 years 11 months ago
Laplacian spectral bounds for clique and independence numbers of graphs
Let G be a simple graph with n vertices and m edges. Let ω(G) and α(G) be the numbers of vertices of the largest clique and the largest independent set in G, respectively. In th...
Mei Lu, Huiqing Liu, Feng Tian
LION
2009
Springer
125views Optimization» more  LION 2009»
14 years 5 months ago
New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory
This work introduces new bounds on the clique number of graphs derived from a result due to S´os and Straus, which generalizes the Motzkin-Straus Theorem to a specific class of h...
Samuel Rota Bulò, Marcello Pelillo
SIAMDM
2010
170views more  SIAMDM 2010»
13 years 6 months ago
Complete Minors and Independence Number
Let G be a graph with n vertices and independence number . Hadwiger's conjecture implies that G contains a clique minor of order at least n/. In 1982, Duchet and Meyniel prov...
Jacob Fox
JUCS
2007
99views more  JUCS 2007»
13 years 11 months ago
Spectral Densest Subgraph and Independence Number of a Graph
: In this paper, we study spectral versions of the densest subgraph problem and the largest independence subset problem. In the first part, we give an algorithm for identifying sm...
Reid Andersen, Sebastian M. Cioaba
CPC
2007
105views more  CPC 2007»
13 years 11 months ago
Packing Cliques in Graphs with Independence Number 2
Let G be a graph with no three independent vertices. How many edges of G can be packed with edge-disjoint copies of Kk? More specifically, let fk(n, m) be the largest integer t s...
Raphael Yuster