Sciweavers

506 search results - page 23 / 102
» Learning Bayesian Networks from Incomplete Databases
Sort
View
JMLR
2010
149views more  JMLR 2010»
13 years 6 months ago
Learning Bayesian Network Structure using LP Relaxations
We propose to solve the combinatorial problem of finding the highest scoring Bayesian network structure from data. This structure learning problem can be viewed as an inference pr...
Tommi Jaakkola, David Sontag, Amir Globerson, Mari...
ITS
2010
Springer
178views Multimedia» more  ITS 2010»
14 years 4 months ago
Learning What Works in ITS from Non-traditional Randomized Controlled Trial Data
The traditional, well established approach to finding out what works in education research is to run a randomized controlled trial (RCT) using a standard pretest and posttest desig...
Zachary A. Pardos, Matthew D. Dailey, Neil T. Heff...
UAI
1993
14 years 14 days ago
Using Causal Information and Local Measures to Learn Bayesian Networks
In previous work we developed a method of learning Bayesian Network models from raw data. This method relies on the well known minimal description length (MDL) principle. The MDL ...
Wai Lam, Fahiem Bacchus
ICML
2009
IEEE
14 years 12 months ago
Proto-predictive representation of states with simple recurrent temporal-difference networks
We propose a new neural network architecture, called Simple Recurrent Temporal-Difference Networks (SR-TDNs), that learns to predict future observations in partially observable en...
Takaki Makino
IJAR
2010
113views more  IJAR 2010»
13 years 9 months ago
A geometric view on learning Bayesian network structures
We recall the basic idea of an algebraic approach to learning Bayesian network (BN) structures, namely to represent every BN structure by a certain (uniquely determined) vector, c...
Milan Studený, Jirí Vomlel, Raymond ...