We present two algorithms for learning large-scale gene regulatory networks from microarray data: a modified informationtheory-based Bayesian network algorithm and a modified asso...
Zan Huang, Jiexun Li, Hua Su, George S. Watts, Hsi...
Several recent techniques for solving Markov decision processes use dynamic Bayesian networks to compactly represent tasks. The dynamic Bayesian network representation may not be g...
Recently several researchers have investigated techniques for using data to learn Bayesian networks containing compact representations for the conditional probability distribution...
David Maxwell Chickering, David Heckerman, Christo...
Background: Biological networks offer us a new way to investigate the interactions among different components and address the biological system as a whole. In this paper, a revers...
Dong-Chul Kim, Xiaoyu Wang, Chin-Rang Yang, Jean G...
This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop e...
Jie Cheng, Russell Greiner, Jonathan Kelly, David ...