We describe a hierarchical probabilistic model for the detection and recognition of objects in cluttered, natural scenes. The model is based on a set of parts which describe the e...
Erik B. Sudderth, Antonio B. Torralba, William T. ...
We develop hierarchical, probabilistic models for objects, the parts composing them, and the visual scenes surrounding them. Our approach couples topic models originally developed...
Erik B. Sudderth, Antonio Torralba, William T. Fre...
Weakly supervised discovery of common visual structure in highly variable, cluttered images is a key problem in recognition. We address this problem using deformable part-based mo...
A successful representation of objects in the literature is as a collection of patches, or parts, with a certain appearance and position. The relative locations of the different p...
This paper presents a parts-based method for classifying scenes of 3D objects into a set of pre-determined object classes. Working at the part level, as opposed to the whole objec...
Daniel F. Huber, Anuj Kapuria, Raghavendra Donamuk...