Random Forests were introduced by Breiman for feature (variable) selection and improved predictions for decision tree models. The resulting model is often superior to AdaBoost and ...
Long Han, Mark J. Embrechts, Boleslaw K. Szymanski...
The FastInf C++ library is designed to perform memory and time efficient approximate inference in large-scale discrete undirected graphical models. The focus of the library is pro...
Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elida...
Objects in the world can be arranged into a hierarchy based on their semantic meaning (e.g. organism ? animal ? feline ? cat). What about defining a hierarchy based on the visual ...
Josef Sivic, Bryan C. Russell, Andrew Zisserman, W...
In this paper, we propose a probabilistic framework targeting three important issues in the computation of quality and trust in decentralized systems. Specifically, our approach a...
We derive PAC-Bayesian generalization bounds for supervised and unsupervised learning models based on clustering, such as co-clustering, matrix tri-factorization, graphical models...