We address the problem of learning topic hierarchies from data. The model selection problem in this domain is daunting—which of the large collection of possible trees to use? We...
David M. Blei, Thomas L. Griffiths, Michael I. Jor...
We consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale and the coarser, hidden variables serve both to captu...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...
In this paper, a Random Field Topic (RFT) model is proposed for semantic region analysis from motions of objects in crowded scenes. Different from existing approaches of learning ...
Directed graphical models with one layer of observed random variables and one or more layers of hidden random variables have been the dominant modelling paradigm in many research ...
The problem of learning forest-structured discrete graphical models from i.i.d. samples is considered. An algorithm based on pruning of the Chow-Liu tree through adaptive threshol...
Vincent Y. F. Tan, Animashree Anandkumar, Alan S. ...