We consider three natural models of random logarithmic depth decision trees over Boolean variables. We give an efficient algorithm that for each of these models learns all but an ...
We give an algorithm that learns any monotone Boolean function f : {-1, 1}n {-1, 1} to any constant accuracy, under the uniform distribution, in time polynomial in n and in the de...
We give a new model of learning motivated by smoothed analysis (Spielman and Teng, 2001). In this model, we analyze two new algorithms, for PAC-learning DNFs and agnostically learn...
Adam Tauman Kalai, Alex Samorodnitsky, Shang-Hua T...
The Kushilevitz-Mansour (KM) algorithm is an algorithm that finds all the “large” Fourier coefficients of a Boolean function. It is the main tool for learning decision trees ...
We present new results on the well-studied problem of learning DNF expressions. We prove that an algorithm due to Kushilevitz and Mansour [13] can be used to weakly learn DNF form...
Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, ...