Active learning has been shown as a key technique for improving content-based image retrieval (CBIR) performance. Among various methods, support vector machine (SVM) active learni...
Steven C. H. Hoi, Rong Jin, Jianke Zhu, Michael R....
We present three approaches for unsupervised grammar induction that are sensitive to data complexity and apply them to Klein and Manning's Dependency Model with Valence. The ...
Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jura...
Learning an unknown halfspace (also called a perceptron) from labeled examples is one of the classic problems in machine learning. In the noise-free case, when a halfspace consist...
An important theoretical tool in machine learning is the bias/variance decomposition of the generalization error. It was introduced for the mean square error in [3]. The bias/vari...
Active learning (AL) is an increasingly popular strategy for mitigating the amount of labeled data required to train classifiers, thereby reducing annotator effort. We describe ...
Byron C. Wallace, Kevin Small, Carla E. Brodley, T...