Abstract. This paper studies a risk minimization approach to estimate a transformation model from noisy observations. It is argued that transformation models are a natural candidat...
Vanya Van Belle, Kristiaan Pelckmans, Johan A. K. ...
This paper proposes an efficient method to learn from multi source data with an Inductive Logic Programming method. The method is based on two steps. The first one consists in lea...
Many perception and multimedia indexing problems involve datasets that are naturally comprised of multiple streams or modalities for which supervised training data is only sparsely...
Ashish Kapoor, Chris Mario Christoudias, Raquel Ur...
In this paper we propose a genetic programming approach to learning stochastic models with unsymmetrical noise distributions. Most learning algorithms try to learn from noisy data...
Inductive learning systems have been successfully applied in a number of medical domains. It is generally accepted that the highest accuracy results that an inductive learning sys...
Mykola Pechenizkiy, Alexey Tsymbal, Seppo Puuronen...